基于计算流体力学的大型质子交换膜燃料电池电堆歧管尺寸优化分析Optimization Analysis of Manifold Dimension of Large PEMFC Stack Based on CFD
胡祎玮;夏玉珍;陆佳宙;王子宸;胡桂林;
摘要(Abstract):
为了提高大型质子交换膜燃料电池(PEMFC)电堆的配气均匀性,基于单电池模拟结果建立了由300片多孔介质堆栈组成的电堆模型,利用计算流体力学(CFD)技术研究了歧管宽度对大型电堆内压强降及反应物浓度的影响。结果表明:增大进气歧管宽度会使电堆内压强降和反应物浓度均匀性略微变差;相对于进气歧管,排气歧管尺寸对电堆性能影响更大;阳极侧,压强降和反应物浓度的均匀性与排气歧管宽度成正比。
关键词(KeyWords):
基金项目(Foundation): 国家自然科学基金项目(11972324)
作者(Authors): 胡祎玮;夏玉珍;陆佳宙;王子宸;胡桂林;
DOI: 10.19620/j.cnki.1000-3703.20220159
参考文献(References):
- [1] MACEDO-VALENCIA J, SIERRA J, FIGUEROARAMIREZ S, et al. 3D CFD Modeling of a PEM Fuel Cell Stack[J]. International Journal of Hydrogen Energy, 2016, 41(48):23425-23433.
- [2] LIU Z X, MAO Z Q, WANG C, et al. Numerical Simulation of a Mini PEMFC Stack[J]. Journal of Power Sources, 2006,160(2):1111-1121.
- [3]李昂.固体氧化物燃料电池堆的多物理场全耦合建模和理论模拟[D].合肥:中国科学技术大学, 2016.LI A. Multi-Physics Field Fully Coupled Modeling and Theoretical Simulation of Solid Oxide Fuel Cell Stacks[D].Hefei:University of Science and Technology of China, 2016.
- [4] WU C W, ZHANG W, HAN X, et al. A Systematic Review for Structure Optimization and Clamping Load Design of Large Proton Exchange Membrane Fuel Cell Stack[J].Journal of Power Sources, 2020(476).
- [5]樊智鑫,宋珂,章桐.空冷质子交换膜燃料电池性能优化研究综述[J].汽车技术, 2020, 535(4):1-8.FAN Z X, SONG K, ZHANG T. Review on Performance Optimization of Air-Cooled Proton Exchange Membrane Fuel Cells[J]. Automobile Technology, 2020, 535(4):1-8.
- [6] CHEN C H, JUNG S P, YEN S C. Flow Distribution in the Manifold of PEM Fuel Cell Stack[J]. Journal of Power Sources, 2007, 173(1):249-263.
- [7]覃有为.车用质子交换膜燃料电池系统的气场模拟及优化[D].武汉:武汉理工大学, 2006.QIN Y W. Gas Field Simulation and Optimization of Vehicle Proton Exchange Membrane Fuel Cell System[D]. Wuhan:Wuhan University of Technology, 2006.
- [8] ZHAO C, YANG J J, ZHANG T, et al. Numerical Modeling of Manifold Design and Flow Uniformity Analysis of an External Manifold Solid Oxide Fuel Cell Stack[J].International Journal of Hydrogen Energy, 2020, 45(28):14440-14451.
- [9] RASHID K, DONG S K, KHAN R A, et al. Optimization of Manifold Design for 1 kW-Class Flat-Tubular Solid Oxide Fuel Cell Stack Operating on Reformed Natural Gas[J].Journal of Power Sources, 2016, 327:638-652.
- [10]胡桂林,樊建人.多通道蛇形流场PEMFC内传递现象的数值模拟[J].电源技术, 2009, 33(4):245-248.HU G L, FAN J R. Numerical Simulation of Transfer Phenomena in PEMFC with Multi-Channel Serpentine Flow Fields[J]. Chinese Journal of Power Sources, 2009, 33(4):245-248.
- [11] CHEN H, HE Y, ZHANG X, et al. A Method to Study the Intake Consistency of the Dual-Stack Polymer Electrolyte Membrane Fuel Cell System under Dynamic Operating Conditions[J]. Applied Energy, 2018, 231:1050-1058.
- [12] LI M, DUAN K J, DJILALI N, et al. Flow Sharing and Turbulence Phenomena in Proton Exchange Membrane Fuel Cell Stack Headers[J]. International Journal of Hydrogen Energy, 2019, 44(57):30306-30318.
- [13] LI W K, ZHANG Q L, WANG C, et al. Experimental and Numerical Analysis of a Three-Dimensional Flow Field for PEMFCs[J]. Applied Energy, 2017, 195:278-288.
- [14] HUANG F X, QIU D K, LAN S H, et al. Performance Evaluation of Commercial-Size Proton Exchange Membrane Fuel Cell Stacks Considering Air Flow Distribution in the Manifold[J]. Energy Conversion and Management, 2020, 203.
- [15] WANG J. System Integration, Durability and Reliability of Fuel Cells:Challenges and Solutions[J]. Applied Energy,2017(189):460-479.
- [16] BAI X Y, LUO L Z, HUANG B, et al. Flow Characteristics Analysis for Multi-Path Hydrogen Supply within Proton Exchange Membrane Fuel Cell Stack[J]. Applied Energy,2021, 301.