基于粒子群优化人工神经网络的临界行车安全距离预测Prediction and Simulation of Critical Driving Safety Distance Based on PSO-ANN
陈良;史志才;张翔;李长庆;
摘要(Abstract):
针对行车安全距离预测中的各种非线性问题,提出一种基于粒子群优化人工神经网络(PSO-ANN)的临界安全距离预测方法。通过粒子群优化(PSO)算法优化人工神经网络(ANN)的权值和阈值,避免ANN容易陷入局部最优的问题,并通过迭代找到全局最优解。以路面情况、前后车速度以及前车减速度作为输入,临界行车安全距离作为输出,应用PSOANN建立预测模型,通过训练收集的样本数据预测行车安全距离,并与当前常用的ANN预测结果进行比较,结果表明:与ANN方法相比,PSO-ANN算法更稳定,且预测结果的平均绝对误差降低了7.8%。
关键词(KeyWords): 临界安全距离;预测模型;粒子群优化算法;人工神经网络
基金项目(Foundation): 国家自然科学基金项目(61802252)
作者(Authors): 陈良;史志才;张翔;李长庆;
DOI: 10.19620/j.cnki.1000-3703.20190633
参考文献(References):
- [1]陈学文,张进国,刘伟川,等.汽车巡航系统前方关键目标识别研究[J].机械科学与技术, 2017, 36(9):1434-1440.
- [2]胡鹏,秦会斌.基于红外测距汽车倒车雷达预警系统设计[J].传感器与微系统, 2018, 37(7):114-116+126.
- [3] ATTIA H A, ISMAIL S, ALI H Y. Vehicle Safety Distance Alarming System[C]//International Conference on Electronic Devices. IEEE, 2017.
- [4]刘志强,张春雷,张爱红,等.基于驾驶行为的追尾避撞控制策略研究[J].汽车工程, 2017, 39(9):1068-1073+1080.
- [5]祝菲菲.基于毫米波雷达定位的汽车三维防碰撞算法研究[D].兰州:兰州理工大学, 2017.
- [6] WANG C, WU F, SHI Z C, et al. Indoor Positioning Technique by Combining RFID and Particle Swarm Optimization-Based Back Propagation Neural Network[J].Optik-International Journal for Light and Electron Optics,2016, 127(17):6839-6849.
- [7]臧利国,滕飞,彭志洋,等.改进Berkeley模型的汽车防碰撞预警算法[J].机械科学与技术, 2018, 37(7):1082-1088.
- [8]刘军辉,陈宏滨.基于FMCW雷达测距的车辆防碰撞系统[J].桂林电子科技大学学报, 2016, 36(5):349-354.
- [9] CHOKSHI P, DASHWOOD R, HUGHES D J. Artificial Neural Network(ANN)Based Microstructural Prediction Model for 22MnB5 Boron Steel during Tailored Hot Stamping[J]. Computers&Structures, 2017, 190:162-172.
- [10] BONYADI M R, MICHALEWICA Z. Particle Swarm Optimization for Single Objective Continuous Space Problems:A Review[J]. Evolutionary Computation, 2017, 25(1):1-54.
- [11]何明慧,徐怡,王冉,等.改进的粒子群算法优化神经网络及应用[J].计算机工程与应用, 2018, 54(19):107-113+128.
- [12] JAHED ARMAGHANI D, SHOIB R S N S B R, FAIZI K,et al. Developing a Hybrid PSO–ANN Model for Estimating the Ultimate Bearing Capacity of RockSocketed Piles[J]. Neural Computing and Applications,2017, 28(2):391-405.
- [13] DAI X, YUAN X, ZHANG J, et al. Improving the Performance of Vehicle Detection System in Bad Weathers[C]//Advanced Information Management, Communicates,Electronic&Automation Control Conference. IEEE, 2017.
- [14]常群,孙申鑫,赵宇超,等.基于路面附着系数估计的多路况安全距离模型[J].重庆理工大学学报(自然科学),2018, 32(12):46-53.