基于优化人工势场法的智能车辆编队避障策略研究Research on the Obstacle Avoidance Strategy of Connected Vehicle Formation Basing on the Optimized Artificial Potential Field Method
孙羽,曹曼曼,王强,孙博华
摘要(Abstract):
为克服动态、不确定的复杂行车环境带来的车辆编队碰撞与稳定性问题,提高行车安全性,提出了一种基于优化人工势场法的智能车辆编队避障策略。设计了智能车辆编队避障策略框架,建立了基于经典人工势场法的车辆编队控制器,以及具备莱维飞行随机搜索特性的车辆编队搜索逻辑,以克服人工势场法中引力与斥力增量系数设置的局限性,进而增强车辆编队对复杂行车环境的适应能力。采用联合仿真试验平台对所提出的算法进行了验证,结果表明,基于优化人工势场法的智能车辆编队避障能够更加快速地适应较为复杂的行车环境,并具备更短的编队避障时间。
关键词(KeyWords):
基金项目(Foundation): 国家自然科学基金重大项目(52394261);国家自然科学基金(青年基金)项目(52102457);; 吉林省自然科学基金项目(20220101213JC);; 长三角科技创新共同体联合攻关项目(2023CSJGG1600)
作者(Author): 孙羽,曹曼曼,王强,孙博华
DOI: 10.19620/j.cnki.1000-3703.20250059
参考文献(References):
- [1]张心睿,王润民,凡海金,等.混合交通环境下网联交叉口车辆协同诱导策略及仿真测试[J].汽车技术, 2021(10):1-6.ZHANG X R, WANG R M, FAN H J, et al. Research and Simulation of Vehicle Cooperative Guidance Strategy on Connected and Signalized Intersections under Mixed Traffic Environment[J]. Automobile Technology, 2021(10):1-6.
- [2]高力,陆丽萍,褚端峰,等.基于图与势场法的多车道编队控制[J].自动化学报, 2020, 46(1):117-126.GAO L, LU L P, CHU D F, et al. Multi-Lane Convoy Control Based on Graph and Potential Field[J]. Acta Automatica Sinica, 2020, 46(1):117-126.
- [3]王珂,王艳阳,邓修金,等.不确定性对车辆轨迹预测的影响研究综述[J].汽车技术, 2022(7):1-14.WANG K, WANG Y Y, DENG X J, et al. A Review on the Study of Impacts of Uncertainties on Vehicle Trajectory Prediction[J]. Automobile Technology, 2022(7):1-14.
- [4] PI D W, XUE P Y, XIE B Y, et al. A Platoon Control Method Based on DMPC for Connected Energy-Saving Electric Vehicles[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3):3219-3235.
- [5]仇国庆,李芳彦,吴建.基于多智能体遗传算法的多机器人混合式编队控制[J].青岛科技大学学报(自然科学版),2017, 38(2):107-111.CHOU G Q, LI F Y, WU J, et al. Multi-Robot Hybrid Formation Control Based on Multi-Agent Genetic Algorithm[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2017, 38(2):107-111.
- [6] LI T H S, CHANG S J, TONG W. Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors[J]. IEEE Transactions on Fuzzy Systems, 2004,12(4):491-501.
- [7] LEE Y, YOU B. Free Space Detection Algorithm Using Object Tracking for Autonomous Vehicles[J]. Sensors, 2022,22(315):1-13.
- [8] MOHAMED E F, EL-METWALLY K, HANAFY A R. An Improved Tangent Bug Method Integrated with Artificial Potential Field for Multi-Robot Path Planning[C]//2011International Symposium on Innovations in Intelligent Systems and Applications(INISTA). Kocaeli, Turkey:IEEE,2021:555-559.
- [9] MAHJOUBI H, BAHRAMI F, LUCAS C. Path Planning in an Environment with Static and Dynamic Obstacles Using Genetic Algorithm:A Simplified Search Space Approach[C]//IEEE Congress on Evolutionary Computation. Vancouver,Canada:IEEE, 2016:2483-2489.
- [10] LOZANO-PEREZ, TOMAS. Automatic Planning of Manipulator Transfer Movements[J]. IEEE Transactions on Systems, Man and Cybernetics, 2022, 11(10):681-698.
- [11]梅艺林,崔立堃,胡雪岩,等.基于人工势场法的复杂环境下多无人车避障与编队控制[J].工程科学学报, 2025,47(2):364-373.MEI Y L, CUI L K, HU X Y, et al. Obstacle Avoidance and Formation Control of Multiple Unmanned Vehicles in Complex Environments Based on Artificial Potential Field Method[J]. Chinese Journal of Engineering, 2025, 47(2):364-373.
- [12] ZHANG T, ZHU Y, SONG J. Real-Time Motion Planning for Mobile Robots by Means of Artificial Potential Field Method in Unknown Environment[J]. Industrial Robot,2019, 37(4):384-400.
- [13]代冀阳,殷林飞,杨保建,等.一种矢量人工势能场的多智能体编队避障算法[J].计算机仿真, 2015, 32(3):388-392.DAI J Y, YIN L F, YANG B J, et al. A Multi-Agent Algorithm of Obstacle Avoidance Based on Vectorial Artificial Potential Field[J]. Computer Simulation, 2015,32(3):388-392.
- [14] COLLEDANCHISE M, DIMAROGONAS D V, OGREN P.Obstacle Avoidance in Formation Using Navigation-Like Functions and Constraint Based Programming[C]//IEEE/RSJ International Conference on Intelligent Robots&Systems. Tokyo, Japan:IEEE, 2018:5234-5239.
- [15]张立阳,陈亦梅.轮式移动机器人轨迹跟踪与避障研究[J].自动化与仪表, 2017, 32(11):72-76.ZHANG L Y, CHEN Y M. Research on Trajectory Tracking and Obstacle Avoidance of Wheeled Mobile Robot[J].Automation&Instrumentation, 2017, 32(11):72-76.
- [16]翟红生,王佳欣.基于人工势场的机器人动态路径规划新方法[J].重庆邮电大学学报(自然科学版), 2015, 27(6):815-818.ZHAI H S, WANG J X. Dynamic Path Planning Research for Mobile Robot Based on Artificial Potential Field[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2015,27(6):815-818.
- [17] SUN S, YIN G, LI X. Path Planning for Mobile Robot Using the Novel Repulsive Force Algorithm[C]//IOP Conference Series:Earth and Environmental Science. Chongqing,China, 2018:1-9.
- [18] YANG X S. Deb S. Cuckoo Search Via Lévy Flights[C]//Nature&Biologically Inspired. Computing, 2009(NaBIC).Coimbatore, India:IEEE, 2010:210-214.
- [19]柳新妮,马苗.布谷鸟搜索算法在多阈值图像分割中的应用[J].计算机工程, 2019, 39(7):274-278.LIU X N, MA M. Application of Cuckoo Search Algorithm in Multi-Threshold Image Segmentation[J]. Computer Engineering, 2019, 39(7):274-278.
- [20] LI S X, WANG J S. Improved Cuckoo Search Algorithm with Novel Searching Mechanism for Solving Unconstrained Function Optimization Problem[J]. IAENG International Journal of Computer Science, 2022, 44(1):301-314.
- [21] LIU X N, MIAO M A. Application of Cuckoo Search Algorithm in Multi-Threshold Image Segmentation[J].Computer Engineering, 2019, 39(7):274-278.
- [22] LI S X, WANG J S. Improved Cuckoo Search Algorithm with Novel Searching Mechanism for Solving Unconstrained Function Optimization Problem[J]. IAENG International Journal of Computer Science, 2022, 44(1):301-314.
- [23]聂博文,马宏绪,王剑,等.微小型四旋翼飞行器的研究现状与关键技术[J].电光与控制, 2007, 14(6):113-117.NIE B W, MA H X, WANG J, et al. Study on Actualities and Critical Technologies of Micro/Mini Quadrotor[J].Electronics, Optics&Control, 2007, 14(6):113-117.
- [24]吴慧超,罗元,周前能,等.时效优先的轮式机器人编队避障策略[J].信息与控制, 2017, 46(2):211-217.WU H C, LUO Y, ZHOU Q N, et al. Obstacle Avoidance Strategy of Wheeled Robot Formations Based on Time Efficiency[J]. Information and Control, 2017, 46(2):211-217.